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A Generalized Spectral Domain Analysis for
Coupled Suspended Microstriplines
With Tuning Septums

TATSUO ITOH, SENIOR MEMBER, IEEE, AND ALBERT SIDNEY HEBERT, MEMBER, IEEE

Abstract—An efficient computation method is developed for solving the
microstrip-type structures in which a number of conducting strips are
located on several interfaces of dielectric layers. The method is applied to
the coupled suspended microstripline with tuning septums on the underside
of the suspending dielectric layer. The numerical solutions obtained by the
new method are compared with available data. The method is believed
useful in the design of tightly coupled structures such as the 3-dB hybrid as
well as of transitions between different transmission lines for microwave
and millimeter-wave integrated circuit application.

I. INTRODUCTION

HIS PAPER describes a new efficient method for

computing characteristic impedances and effective
dielectric constants of the even and odd modes in the
coupled suspended microstriplines with grounded tuning
septums. The cross section of the structure is shown in
Fig. 1. This structure recently has been introduced by
Aikawa [1], [2] to circumvent some of the practical diffi-
culties in realizing coupled microstripline structures such
as a 3-dB hybrid.
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It is well known that the phase velocities or the effective
dielectric constants of the even and odd modes must be
identical or close to each other within a few percent in
order that the coupled microstripline structure can be
used as a directional coupler. In addition, the separation
28 between two strips must be reasonably large so that
the structure can be fabricated without undue practical
difficulty. Several methods have been reported to control
the phase velocities of the even and odd modes and to
realize a tightly coupled structure. They include the di-
electric overlay [3], the wiggly line [4], and the interdig-
itate line [5].

In the method proposed by Aikawa [2], the value of 2.
to obtain a tight coupling is relatively large, and the phase
velocity of the even mode can be tuned by changing the
width of the grounded septums. It is also pointed out that
the proposed structure is potentially useful as a reverse
phase hybrid ring [1]. We also believe this structure is
useful at millimeter-wave frequencies because it is a modi-
fication of the suspended microstripline [6].

The analysis of the structure has been done by the use
of the successive over-relaxation technique [1}, [2]. In this
paper, an alternative and very efficient numerical tech-
nique is developed for analyzing the structure shown in
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Fig. 1. Cross section of coupled suspended lines with septums.

Fig. 1. The method is essentially a generalization of the
spectral domain technique developed by Itoh and Mittra
for solving a number of microstripline structures [7]-[9].
However, the original version of the technique is applica-
ble only to the structures in which strips or slots are
located on one of the interfaces between different dielec-
tric regions. In the generalized version presented here, the
above restriction is no longer required, and we can
analyze the structures in which strips and/or slots are
located at various interfaces. Although in this paper only
the structure in Fig. 1 is analyzed, the new method itself is
quite general and can be applied to a number of micro-
strip type structures that contain several strips located on
more than one interface between dielectric layers.

The method in this paper has a number of attractive
features. 1) The method is numerically simpler and more
efficient than many conventional space-domain analyses
such as the finite difference techniques. This is due prim-
arily to the fact that, in the present method, solutions are
extracted from algebraic equations rather than from cou-
pled integral equations or differential equations typically
appearing in the conventional space-domain approaches.
2) The use of Fourier transforms allows one to convert
convolution integrals into algebraic products, thus avoid-
ing the necessity of numerical evaluation of complicated
integrals, a process which is often extremely time consum-
ing. 3) Unlike many other methods, the physical or quali-
tative nature of the field corresponding to the modal
solutions is directly incorporated in the process of solution
via the appropriate choice of basis function as described
later. 4) The solution by this method is stationary in
nature. This means that the computed characteristic im-
pedances of even and odd modes are insensitive to the
first-order error associated with the basis functions. 5)
The accuracy of the solution can be improved systemati-
cally by increasing the size of the matrix associated with
the system of linear equations. However, the matrix size
required for accurate solutions is typically 2X2 or 4Xx4
and is much lower than the one to be used in many other
methods. 6) The coupling phenomena between strips and
septums will appear in the solution process in a form
clearly identifiable. In the next two sections, the formula-
tion process will be presented, and the solution method
given. Only the important steps will be described. In
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Section IV some numerical results will be presented and
compared with other available data.

II. FORMULATION OF THE PROBLEM

In this paper we will restrict ourselves to cases where
the quasi-TEM approximation is valid, although the pre-
sent method can easily be extended to a more rigorous
dispersion analysis. Under this assumption, we only need
to solve Poisson’s equation in the cross section subject to
appropriate boundary conditions and to obtain line capa-
citances for both even and odd modes. From these quanti-
ties, characteristic impedances and the normalized guide
wavelengths (or, equivalently, the effective dielectric con-
stants) of these modes can be readily obtained.

Since the structure in Fig. 1 is symmetric with respect to
the y axis, we need to consider only the right-hand half
(0<x <L) after placing either a magnetic or an electric
wall for the even and odd mode, respectively. When we
designate three regions, 0<y <b, b<y<b+h,and b+h<
y <d, with the index i=1, 2, and 3, the interface condi-
tions to be satisfied are

d1(x,0)=¢y(x,b),  0<x<L (1a)
= (% geSTr T
| 3
)2 PR g M
_ —BS—E—)—Q, L—a<x<L (on septum)
0, ' 0<x<L-a
(Ic)
&y(x,b+h)=¢y(x,b+h), 0<x<L  (2a)
¢axb+h)= { qIS/O’(x), roxssst pfflffﬁ) (20)
W
W |ymp+n W |y=p+n
_ —%ﬂ, S <x <S+ W (on strip)
0, ’ 0<x<S, S+ W<<x<L

(2¢)

where ¢,(x,y),i=1,2,3 are potential functions in Region /,
¢, is the relative dielectric constants of the dielectric slab,
V is the known potential of the strip, and ¢, is the free
space permittivity. p,(x) and p(x) are unknown charge
distributions on the septum (L—a<x <L,y=>b) and on
the strip (S<x<S+ W,y=b+h), respectively. On the
other hand, v(x) and ¢y(x) are unknown potential distrib-
utions as the respective interfaces. In addition ¢(x,y)
must be zero on the conducting peripheral walls and
¢,(0,)=0 or (3¢;(0,))/(3x)=0 on the electric or mag-
netic wall at x=0.
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Instead of solving the two-dimensional static problem
in the space (x,y) domain, we will work in the Fourier
transform or spectral domain. To this end we will in-
troduce finite Fourier transforms via

é(n,y)= fo " o(x,y) cos k,x dx,
~ _n—1/2 -

k=" n=12,-- (3a)
b(ny)= [“6(x.p) sin k,xdx,
0
k‘,,=—1”:w n=1, 2, (3b)

where (3a) is for the even mode whereas the odd mode
requires the use of (3b). This distinction is due to the
different symmetry conditions at x=0 for these two or-
thogonal modes. Also these choices of the transform vari-
ables 13,, assure that ¢(L,y)=0 for both even and odd
modes. When Fourier transformed, the Laplace equation
for ¢ becomes

27
ﬁ..k2¢ 0.

(4)
The rest of the formulation process in the remainder of

this section remains identical for both even and odd
modes. The solutions of (4) in each region are

éy(n,y)=4, sinh k,y (5)
iz(n,y)=B,f sinh kAn(y—b)+B,f cosh Ie,,(y—b) (6)
5(n,y)=C, sinh k,(d—y) (7

where 4,, B,, and C, are unknown coefficients to be
determined. Notice that ¢,(n,0)=¢;(n,d)=0 in order to
satisfy the boundary condition that ¢(x,y)=0 at y =0 and
d.

The next step is to Fourier transform interface condi-
tions (1) and (2). The results are

$1(n,b)=(n,b) (82)
¢1(n,0)=b(n) (8b)
3{5_3 84)1 = ﬁs(n)
€, ay s ay b € (80)
os(n,b+h)=¢,(n,b+h) (92)
by(n, b+ )=y () +bo(n) (9b)
8&’3 65&2 f’(")
- — € =— 9
W lyesin Y mprn € ()

where 6, p,, 5&0, and p are unknown transformed quantities
defined by

L-a cos k,x
5(n)= f u(x){smk x} » (10)
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cos k X
am=[" ps(x){ } x (11)
k,x
dolm)= [+ [" 4 °°S'f lax  (12)
nx
S+ W cos k X
Bn)= | p(x){ }dx (13)
and ¢, is the transform of the given strip potential
StW, cos k x
o, (n S bdx. (14
vin)= f {sin k,,x} )

We will now substitute appropriate expressions in (5),
(6), or (7) into (8a), (8c), (9a), and (9¢) and express 4,,, B},
B¢, and C, in terms of 5, and p. Substituting the resulting
expressions into (8b) and (9b) we obtain coupled algebraic
equations

Gi(n)p(n)+ G o(n)B,(n) =y + o (15a)
Gy (n)p(n) + Gypp(n)b(n)=1© (15b)
where
G'.”'-é[cothk h+ lcothk b] (16a)
~ a1 1
Gp=Gy=—— < 16b
12 21 det sinh knh ( )
Gp= diet [coth kh+ elcoth Ent] (16¢)
det= ¢k, | € + coth k, k coth kb

r

+ coth ktj(coth k,h+ elcoth k:,b)}. (164d)

Notice that (15) contains four unknowns p, g, ;130, and &
in two equations. However, as will be described in the
next section, two of the unknowns 650 and ¥ can be
eliminated in the solution process, and we can solve two
equations for the two remaining unknowns p and p..

Before closing this section, let us investigate the nature
of the coupled algebraic equations in (15). Equations (15a)
and (15b) give the Fourier transforms of potential distrib-
utions at y=>b+ h and y = b, respectively. For instance, in
(15a), the potential at y =5+ is generated by § which is
located at y=>b+h as well as p, at y=>. Hence, G12
contains the factor 1/sinh &,k so that the potential due to
p, becomes smaller by this factor at y=b+h. It is now
easy to identify the physical nature of the coupling
mechanism expressed by Gy, and G,,.

When b0, G,,= G,,—0 and

- 1
G =—= = = .
eok,| coth k1 +¢, coth K, 1]

(17)
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Then (15a) becomes an isolated equation corresponding to
the microstripline structure. On the other hand, if a—0,
the septums vanish and so does p,. In this case (15a)
becomes the equation for the suspended microstrip struc-
ture. In either of these two cases, the equation (15a) is an
isolated (uncoupled) algebraic equation which would be
derived by applying the original version of the spectral
domain techniques previously reported in the literature
[7]-[9] directly to the respective structures.

Actually, G,;, G5 G,, and Gy, correspond to the
Fourier transforms of Green’s functions. The first index
signifies the location of y at which the function is
evaluated (1 for y=>b+h and 2 for y=»,) whereas the
second corresponds to the location of the unit source (1
for y=>b+ h and 2 for y = b). When the inverse transforms
of (15) are taken, we obtain coupled integral equations in
which the integrals are of convolution type. We will not
go back, however, to the space domain by taking the
inverse transform. Rather, we stay in the spectral domain
and apply the Galerkin’s method there. As we will see in
the next section, such a procedure results in a small size
matrix equation which is numerically easy to handle.

II1.

The formulation in the previous section is exact. In this
section, an efficient method for solving (15) will be de-
scribed. This method is essentially the Galerkin’s method
as applied to the spectral domain formulation. From this
method we can obtain line capacitances as variational
quantities. Two of the unknowns ¢, and & can be
eliminated in the solution process and p and p, will be
obtained.

In the Galerkin’s method, we first expand unknown p
and p, in terms of linear combinations of known sets of
basis functions as

METHOD OF SOLUTION

K

B)= 2 aiie(n) (18a)
M
p,(n)= 21 b,upsm(n) (18b)
where @, k=1,2,---,Kand b,,m=1,- - - , M are unknown

coefficients. It is important that 5, and p,, are chosen
such that their inverse transform, say p,(x) and p,,(x) are
nonzero only over the strip and septum, respectively.

We will now substitute (18) into (15a) and (15b) and
take the inner product of the resulting equations with
p,i=1,2,---,K and p,j=12,-- -, M. The results are the
following coupled system of linear equations of size (K+
M)X(K+ M).

K
> Kila + 2 K,=P, i=12,---,K(19)
k_.
K

la + K.22b =0, j=1,2,---,M (19b)
P k k imYm

where

o
= 3 516 (miln) (200)
Kii= S 50) Gl (200)
'= 5, 5, (i) (200
2 () Goapon () (200)
Pi= 3 [A(0y0) ()b

- § (o) =5 [ "0V

=% SS+Wp,(x)dx @1)

In the derivation of (21) we have used the Parseval’s
relation. The terms p,¢, drop out because

o -~

2 pi%o=

n=1
by virtue of the fact that p,(x)=0for 0<x<S and S+ W
<x <L whereas ¢yo(x)=0 for §<x <S+ W. By the same
token, the right-hand side of (19b) is also zero, and no
terms containing ©(n) appear. Since P; is now known, we
can solve (19) for @, and b,,. The line capacitance C is
given by using the values of g, when V=1 as

- = 2 aka+ka(x)dx—— 2 & Py

It is known that the capacitance expression in (22) has a
stationary nature and is free from the first-order error
introduced in the choice of the basis functions j,(n) and
Pm(n). Also, the capacitance value computed in this
manner is always smaller than the true value. This fact
can be advantageously used in choosing basis functions.

It is mathematically conceivable to use complete sets
for p,(x) and p,,(x) and use their Fourier transforms as
the basis functions in (19). However, such a large size
matrix is not useful in practice. Much better convergence
can be obtained from a small size matrix if we choose a
few basis functions which represent physical characteris-
tics of the charge distributions on the strips and septums.
For instance, it is known that the charge distributions
become singular toward the edges of the strips and sep-
tums. When this nature is incorporated in the choice of
basis function, good results can be obtained from a very
small matrix size as we will demonstrate in the next
section. In selecting basis functions, it should be noted
that those resulting larger capacitance values are better
choices since the computed values are proven to be always
smaller than the true value.

In order to obtain the characteristic impedances and
the normalized guide wavelengths for even and odd
modes, we need to compute the line capacitance C for the
structure in Fig. 1 and the one C,; for the hypothetical

L
3 [ ees(x)dx=0

(22)
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problem for which €, =1 in the same structure. The results
are

s (23)

ai (24)

where Z, =1/(cC,,) with the light velocity ¢ in free
space and the free space wavelength A.

IV. NuUMERICAL RESULTS

Before generating reliable numerical results, it is im-
portant to select good basis functions. We have tested
several different functions as p,(n) and p,,(n) and solved
the 2X2 equations resulting from (19). For 5, we tested
the Fourier transforms of the following space functions

S<x<S+W

1
= ’ 2
p(x) { 0, otherwise (25)
3
4 Z(x e Y VTV)
p(x)= 'gW 1+ W , S<x<S+W
0, otherwise
(26)
1
, S<x<S+W
p(x)= (V_V)z_( _ _!K)Z
w\/ 3 x—S 3
0, otherwise.
@7
For p,, we have tested
—2—(L—x) L-a<x<L
p(x)=1 42 ’ (28)
0, otherwise
4 3
p_,(x)= ;(L x) 5 L—a<x<L (29)
0, otherwise
2—1- ___{,_:x__ , L—a<x<L
ps(x)= a az—(L—)(;)2 (30)
0, otherwise.

Note that the transforms of these functions can be readily
obtained in closed forms.

Table 1 summarizes the results of various combinations
of the above. Since the smaller the values of characteristic
impedances the better the choice is, the combination of
(27) and (30) is the most satisfactory. In (27) and (30) the
singular natures of the charge distribution near the edges
of the strip and septum are included, and, hence, they
represent actual distribution most faithfully. It is also
noted that the proper choice of the g, function is more
effective in accurate calculation of even-mode impedance
whereas that of § is more important for odd-mode imped-
ance. These findings are in agreement with the physical
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TABLE 1
COMPARISON OF THE COMPUTED RESULTS FOR DIFFERENT
CHOICES OF BAsis FUNCTIONS

Combinations Characteristic Impedances

P Py Even Mode 0dd Mode

25 28 162,43 43.20

26 29 152.33 42.70

26 30 147.82 42.45

27 30 146.61 40.26

(4 x 4 matrix 145,52

39.92)"
€=96, 5/h=0.15, W/h=12,a/h=10, b/h=100, t/h=10.0, L/h
=10.0.
*(26) and (27) are used as p;,i=1,2, and (29) and (30) as pg,
Jj=L2.

300 T T T

200 — —
This Method
——— _ Aikawa

Impedance ()
T

100 (~ , -

Zodd

° ) 1 1
[¢] 10 20
Shit Width 2(L-a) (mm)

Fig. 2. Comparison of computed characteristic impedances with those
by Aikawa. ¢, =2.4, $§=0.335 mm, W=148 mm, L=16.4 mm, t=16.4
mm, A=1.64 mm, 5=8.2 mm

behavior of the potential and charge distributions. For the
even-mode impedance, the electric fluxes originate at the
strip and terminate at the grounded conductor as the
potentials of the two strips are identical. Hence, there is a
strong charge concentration toward the edges of the sep-
tums. The inclusion of singularity in p, correctly repre-
sents this phenomenon. On the other hand, for the odd-
mode, most of the fluxes are between two strips as their
potentials are opposite in polarity. The singular nature at
the edges of strips, therefore, improves the numerical
results.

We have also studied the convergence of the solution
by increasing the matrix size from 2X2 to 4X4. In the
4X 4 case, (26) and (27) were used for p, and p, whereas
(29) and (30) for p,; and §,. The results are given in Table
I. As the convergence is seen to be very good, we con-
cluded that it was unjustified to use any larger size matrix
with increasing computation time. All the data reported in
the rest of the paper were generated by the use of a 4 x4
matrix. Accuracy can be improved further by the use of a
larger size matrix. However, the degree of improvement
becomes increasingly small, and, hence, such improve-
ment is economically unjustified. The error of the numeri-
cal results reported here is believed to be less than 2



ITOH AND HEBERT: SPECTRAL DOMAIN ANALYSIS

O e e L B |

S/h
- 0.1 4

0.2
03
200 — —
L Zeven

100 —
r— S/h

impedance ()

0.3
03
0l
- Z odd -
0 (R TR W SN NN N SO BN |
0] 5 10
Slit Width 2(L-a)/h
(@)
300 T T T [ T T T 71
S/h
O.\
0.2
200 (- 03
S
3
g o Zeven =
o
[
Q
E
100 — —
S/h
03
/— .
Zodd ﬂ
0 TR R SR RN N T N
0 5 10
Siit Width 2(L-a)/h
()
200 T T T T ’ T T ) T
S/h
0.l
0.2
i 03 |
S
g
g 100 - Zeven {
L3
o
£
S/h
- 0.3 —
&
Zodd '
0 PR S SR WO HN WA S N
0 5 10
Slit Width 2 (L-a)/h
©

Fig. 3. Characteristic impedances of coupled suspended lines versus
the slit width, W/h=12, L/h=b/h=1/h=10.0. (a) .=2.4.(b) ¢, =
3.8. (c) ¢,=9.6.
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Fig. 4. Normalized guide wavelength versus the slit width. W/h=1.2,
L/h=b/h=1t/h=100,S/h=02

percent from the past experience gained in applying the
spectral domain method to microstripline problems.

In Fig. 2, we compared our results with those reported
by Aikawa [1]. The slit width is meant to be the distance
between edges of two septums. Except for the characteris-
tic impedance of the even mode of the structure with
small slit width (large septums), the results are indis-
tinguishable on the graph. It is noted that Aikawa used
the finite difference technique in which finer mesh points
for accelerating the convergence of computation have
been used only in the region surrounding the strips [1], [2].
No such procedures seemed to have been implemented
near the edges of the septum. It is believed that the results
so obtained are accurate for the odd mode since the
strong interaction between strips can be taken into
account correctly. However, in the even-mode case, the
interaction between the strip and septum becomes more
important, and, hence, finer mesh points near the septum
edges are felt necessary.

In Fig. 3, characteristic impedances of even and odd
modes are plotted versus the slit width for a number of
structural parameters. Throughout Figs. 2 and 3 it is clear
that the even-mode impedance can be tuned over a wide
range by changing the septum size whereas the odd-mode
impedance is virtually unaffected.

Fig. 4 shows the guide wavelength A, normalized by the
free space wavelength A versus the slit width. It is clearly
seen that the guide wavelength of the even mode vaires in
a wider range than that of the odd mode. Also notice that
at certain values of the septum width the guide wave-
lengths of even and odd mode coincide. This phenomenon
is useful for the directional coupler applications as
pointed by Aikawa [2].

Variations of characteristic impedances and guide
wavelengths versus the strip width are shown in Fig. 5 for
a number of different dielectric materials. Characteristic
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Fig. 5. Characteristic impedance and normalized guide wavelength versus strip width. L /h=b/h=t/h=

10.0, S/h=02. (a) ¢,=2.4. (b) €, =38. (c) ¢, =9.6.

impedances of the even mode vary more rapidly with the
strip width than those of the odd mode. Two values of q,
the septum width, are chosen. For one choice of a, the
guide wavelength of the even mode is larger than that of
the odd mode for any strip width in the range computed.
For another choice, the situation is completely opposite.

V. CONCLUSIONS

In this paper we presented a new efficient method for
computing the characteristic impedance and the guide
wavelength in coupled suspended microstriplines with
tuning septums. The method has a number of advantages
over many other methods and, in addition, is quite general
so that it can be applied to many similar structures. The
accuracy of the results was compared with available data.
A number of numerical data have been generated.

The structure considered here is believed useful in mi-
crowave integrated circuit applications for such devices as
a quadrature hybrid. In addition, we conjecture that the
structure can be used as a transition from one type of
transmission line to another, such as microstrip to
coplanar and microstrip to dielectric waveguide [10]. This
is because in the present structure we have greater flexibil-
ity in controlling the field distributions in the cross section
due to the presence of the septums than in many other
transition structures. The work along this line will be
atter.pted in the future.

The computation time in the case of a 4X4 matrix was
1/s (CPU time) per point on a DECSYSTEM-10 com-
puter.

[

(2]

131

(41

[5]
6]
7
8]

9]
(10]
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