
820 IEEE TRANSACTIONS ON MICROWAVE THEORY ~ TECHNIQUES, VOL. M’IT-26, NO. 10, OCTOBER 1978

ACKNOWLEDGMENT

The authors are indebted to B. Loriou, M. Goloubkoff,

and Y. Gamier for

study.

their assistance

References

in performing this

[1]

[2]

[3]

[4]

Schneider. “Millimeter-wave integrated circuits.” in IEEE Znt.

Microwave Synrp. Digest (Univ. o~Colorado, Bo~der), June 4-6,
1973.

F. Z. Keister, “An evaluation of materials and processes for
integrated microwave circuits; IEEE. Trans. Microwaue Theory
Tech., vol. MTT-16, pp. %9-475, July 1968.

M. Caulton, “Flrn technology in microwave integrated circuits;

Proc. IEEE, vol. 59, pp. 1481–1489, Oct. 1971.

H. Sobol, “A review of the technological and electromagnetic
limitations of hybrid circuits for microwave applications; IEEE.

Trans. Parts, Hybrids, Packag., PHP-8, pp. 59-66, June 1972.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

R. A. Pucel et al., “Losses in rnicrostrip~ IEEE. Trans. Microwatx
Tlzeow Tech., vol. MTT- 16, pp. 342-350, June 1968.
Joly, “Lignes T&raphiques et Tikphoniques.” France. Private

communication.

J. Magarshack, “Laboratoire de Physique Applique,” France,
private communication.

T. T. Hitch et al., “Chemical analyses of thick fihn gold conductor

inks,” IEEE. Trans. Parts, Hybridr, Packag., vol. PHP-11, pp.
248-253, Dee. 1975.

Horton et aL, “Variation of microstrip losses with thickness of
strip: Electron. Lett., vol. 7, 1971.
M. Goloubkoff, “R61aisation en rnicroc$lectronique d’un amplifi-
cateur a transistors hyperfrequences en bande L,” Symposium
Microelektronik 5 Munich-Novembre 1972.
E. J. Crescenzi et al., “Fused silica A better substrates for
mixers: Microwaves, Jan. 1976.
V. S. Aramati et al., “Thin-fihn microwave integrated circuits;
IEEE Trans. Parts, Hybriak, Packag., vol. PHP-12, pp. 309-316,
Dec. 1976.

A Generalized Spectral Domain Analysis for
Coupled Suspended Microstriplines

With Tuning Septums

TATSUO ITOH, SENIOR MEMBER, IEEE, m ALBERT SIDNEY HEBERT, MEMBER, IEEE

Abstract-An efficient computation method is developed for solving the

rnicrostrip-type structures in which a number of conducting strips are
located on severaf interfaces of dielectric layers. The method is appfied to

the coupled suspended microstripline with tuning sep~ on the underside

of the suspending dielectric layer. The mnnericaf solutions obtained by the
new method are compared with available data. The method is befieved

rrsefrd in the design of tightly coupled structures such as the 3-dB hybrid as
well as of transitions between different transmission fines for microwave
and milfimeter-wave integrated circuit application.

I. INTRODUCTION

T HIS PAPER describes a new efficient method for

computing characteristic impedances and effective

dielectric constants of the even and odd modes in the

coupled suspended microstriplines with grounded tuning

septums. The cross section of the structure is shown in

Fig. 1. This structure recently has been introduced by

Aikawa [1], [2] to circumvent some of the practical diffi-

culties in realizing coupled microstripline structures such

as a 3-dB hybrid.

Manuscript received November 11, 1977. This work was supported in

part by a U. S. Army Research Grant DAAG29-77-G-0220.
The authors are with the Department of Electrical Engineering, Uni-
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It is well known that the phase velocities or the effective

dielectric constants of the even and odd modes must be

identical or close to each other within a few percent in

order that the coupled microstripline structure can be

used as a directional coupler. In addition, the separation

2S between two strips must be reasonably large so that

the structure can be fabricated without undue practical

difficulty. Several methods have been reported to control

the phase velocities of the even and odd modes and to

realize a tightly coupled structure. They include the di-

electric overlay [3], the wiggly line [4], and the interdig-

itate line [5].

In the method proposed by Aikawa [2], the value of 2S

to obtain a tight coupling is relatively large, and the phase
velocity of the even mode can be tuned by changing the

width of the grounded septums. It is also pointed out that

the proposed structure is potentially useful as a reverse

phase hybrid ring [1]. We also believe this structure is

useful at millimeter-wave frequencies because it is a modi-

fication of the suspended microstripline [6].

The analysis of the structure has been done by the use

of the successive over-relaxation technique [ 1], [2]. In this

paper, an alternative and very efficient numerical tech-

nique is developed for analyzing the structure shown in

0018-9480/78/ 1000-0820$00.7501978 IEEE
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f-h r-l Section IV some numerical results will be presented and

compared with other available data.

n 1

IT

L.--2LJ-----J
Fig. 1. Cross section of coupled suspended lies with septums.

Fig. 1. The method is essentially a generalization of the

spectral domain technique developed by Itoh and Mittra

for solving a number of microstripline structures [7]-[9].

However, the original version of the technique is applica-

ble only to the structures in which strips or slots are

located on one of the interfaces between different dielec-

tric regions. In the generalized version presented here, the

above restriction is no longer required, and we can

analyze the structures in which strips and/or slots are

located at various interfaces. Although in this paper only

the structure in Fig. 1 is analyzed, the new method itself is

quite general and can be applied to a number of micro-

strip type structures that contain several strips located on

more than one interface between dielectric layers.

The method in this paper has a number of attractive

features. 1) The method is numerically simpler and more

efficient than many conventional space-domain analyses

such as the finite difference techniques. This is due prim-

arily to the fact that, in the present method, solutions are

extracted from algebraic equations rather than from cou-

pled integral equations or differential equations typically

appearing in the conventional space-domain approaches.

2) The use of Fourier transforms allows one to convert

convolution integrals into algebraic products, thus avoid-

ing the necessity of numerical evaluation of complicated

integrals, a process which is often extremely time consum-

ing. 3) Unlike many other methods, the physical or quali-

tative nature of the field corresponding to the modal

solutions is directly incorporated in the process of solution

via the appropriate choice of basis function as described

later. 4) The solution by this method is stationary in

nature. This means that the computed characteristic im-

pedances of even and odd modes are insensitive to the

first-order error associated with the basis functions. 5)

The accuracy of the solution can be improved systemati-

cally by increasing the size of the matrix associated with

the system of linear equations. However, the matrix size

required for accurate solutions is typically 2 X 2 or 4X 4

and is much lower than the one to be used in many other
methods. 6) The coupling phenomena between strips and

septums will appear in the solution process in a form

clearly identifiable. In the next two sections, the formula-

tion process will be presented, and the solution method

given. Only the important steps will be described. In

II. FORMULATION OF THE PROBLEM

In this paper we will restrict ourselves to cases where

the quasi-TEM approximation is valid, although the pre-

sent method can easily be extended to a more rigorous

dispersion analysis. Under this assumption, we only need

to solve Poisson’s equation in the cross section subject to

appropriate boundary conditions and to obtain line capa-

citances for both even and odd modes. From these quanti-

ties, characteristic impedances and the normalized guide

wavelengths (or, equivalently, the effective dielectric con-

stants) of these modes can be readily obtained.

Since the structure in Fig. 1 is symmetric with respect tcl

the y axis, we need to consider only the right-hand hall

(O<x <L) after placing either a magnetic or an electric

wall for the even and odd mode, respectively. When we

designate three regions, O<y <b, b <y <b + h, and b + h <

y <d, with the index i= 1, 2, and 3, the interface condi-

tions to be satisfied are

Ol(x, b)=%(x>b), O<X<L (la)

{
+,(x, b)= 0’

L – a <x <L (on septum)
(lb)

v(x), O<x<L–a

/

P,(x)—— L – a <x <L (on septum)= 7

60

[0, O<x<L–a

(lC)

%(x,b+h)=%(x>b+h), O<X<L (2a)

(+Z(x,b + h) = “
S<X<S+ TV(on strip)

(2b)
@o(x)> O< X<S, S+ W<X<L

[-

_ p(x)
, S <x <S + W (on strip)

. 60

0, O< X<S, S+ W<x<l.

(2C)

where +I(x,y), i = 1,2,3 are potential functions in Region (~t

~, is the relative dielectric constants of the dielectric slab,

v is the known potential of the strip, and tO is the free

space permittivity. p,(x) and p(x) are unknown charge

distributions on the septum (L – a <x <L,y = b) and on

the strip (S <x < S + W,y = b + h), respectively. On the
other hand, v(x) and @O(x) are unknown potential distrib-

utions as the respective interfaces. In addition $i(x,y)

must be zero on the conducting peripheral walls and

+,(O,Y) = O or (a@i(O,y))/(ax) = O on the electric or mag-
netic wall at x = O.
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(3a)

Instead of solving the two-dimensional static problem

in the space (x,y) domain, we will work in the Fourier

transform or spectral domain. To this end we will in-

troduce finite Fourier transforms via

~(n,y) = ~~@(X,Y) COSinxdx,
o

~=n–1/2
n L

7r n=l,2,. . .

~(n,y) = ~~+(x,y) sin ~nxdx,
o

Ln=f7r n=l, 2,.. . (3b)

where (3a) is for the even mode whereas the odd mode

requires the use of (3b). This distinction is due to the

different symmetry conditions at x = O for these two or-

thogonal modes. Also these choices of the transform vari-

ables & assure that @(Ljy) = O for both even and odd

modes. When Fourier transformed, the Laplace equation

for @ becomes

d2~
—–L;+=O.
42

(4)

The rest of the formulation process in the remainder of

this section remains identical for both even and odd

modes. The solutions of (4) in each region are

&(n,y)=Afl sinh i~ (5)

&n,Y) = B; sinh ~.(Y - b) + B; COSh~.(.Y - b) (6)

&3(n)Y)= C. sinh ~n(d–Y) (7)

where An, B., and C. are unknown coefficients to be

determined. Notice that ~l(n, O)= ~~(n, d) = O in order to

satisfy the bounda~ condition that r$(x,y) = O at y = O and

d.

The next step is to Fourier transform interface condi-

tions (1) and (2). The results are

&(n,b)=&2(n,b) (8a)

;I(n,b) = ti(n) (8b)

dmb+fi)=h(nlb+h) (9a)

d2(n,b + h) =?V(n) +60(n) (9b)

where fi, &, ?., and P are unknown transformed quantities
defined by

(lo)

(11)

(13)

and & is the transform of the given strip potential

H
,.

i%(~)=j~s+‘V :;:; dx. (14)

n

We will now substitute appropriate expressions in (5),

(6), or (7) into (8a), (8c), (9a), and (9c) and express A., B:,

B;, and C. in terms of j, and ~. Substituting the resulting

expressions into (8b) and (9b) we obtain coupled algebraic

equations

Gll(n)fi(n) + G12(n)@,(n) =&v+& (15a)

G21(n)@(n) + Gzz(n)fi,(n) = 6 (15b)

where

(16a)

(16b)

(16c)

[
M= Coknc,+ coth ~nh coth knb

( )]+coth int coth knh + + coth ~nb . (16d)
r

Notice that (15) contains four unknowns fi, ~,, JO, and U

in two equations. However, as will be described in the

next section, two of the unknowns ~. and 6 can be

eliminated in the solution process, and we can solve two

equations for the two remaining unknowns j5 and fi~.

Before closing this section, let us investigate the nature

of the coupled algebraic equations in (15). Equations (15a)

and ( 15b) give the Fourier transforms of potential distrib-
utions at y = b + h and y = b, respectively. For instance, in

(15a), the potential at y = b + h is generated by L which-is

located at y = b+ h as well as @, at y = b. Hence, G12

contains the factor 1/sinh knh so that the potential due to

~. becomes smaller by this factor at Y = b + h. lt is now
easy to identify the ph~sical n~ture of the coupling

mechanism exp~essed.by Glz and G21.

When b+O, G,z = G21~0 and

Gl,= 1
(17)

●ok. [ coth int+ c,coth inh ] “
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Then (15a) becomes an isolated equation corresponding to

the microstripline structure. On the other hand, if a-+0,
the septums vanish and so does @,. In this case (15a)

becomes the equation for the suspended rnicrostrip struc-

ture. In either of these two cases, the equation (15a) is an

isolated (uncoupled) algebraic equation which would be

derived by applying the original version of the spectral

domain techniques previously reported in the literature

[7]-[9] directly to the res~ective strictures.

Actually, G, ~, Glz, G21, and GZ2 correspond to the

Fourier transforms of Green’s functions. The first index

signifies the location of y at which the function is

evaluated (1 for y = b + h and 2 for y = b) whereas the

second corresponds to the location of the unit source (1

for y = b + h and 2 for y = b). When the inverse transforms

of (15) are taken, we obtain coupled integral equations in

which the integrals are of convolution type. We will not

go back, however, to the space domain by taking the

inverse transform. Rather, we stay in the spectral domain

and apply the Galerkin’s method there. As we will see in

the next section, such a procedure results in a small size

matrix equation which is numerically easy to handle.

8’2~

(20a)

(20b)

(20C)

(20d)

= ~~, ‘1(n)6V(n)=+JLPi(X)VdX

‘~~s+wPi(x)dx (21)

In the derivation of-(21) we have used the Parseval’s

relation. The terms @,@.drop out because

Y@i?O= +JLPi(x)40(x)dx=0

n=l
III. METHOD OF SOLUTION

by virtue of the fact that pi(x)= O for O<x <S and S + W
The formulation in the previous section is exact. In this <X <L whereas *O(X)= O for S <X <S + W. By the same

section, an efficient method for solving (15) will be de- token, the right-hand side of (19b) is also zero, and no

scribed. This method is essentially the Galerkin’s method terms containing ti(n) appear. Since Pi is now known, we

as applied to the spectral domain formulation. From this can solve (19) for ak and bm. The line capacitance C is

method we can obtain line capacitances as variational given by using the values of ak when V= 1 as

quantities. Two of the unknowns $0 and 6 can be

eliminated in the solution process and E and & will be
~= $1 a~~s+ ‘p~(x)dx= $,$, akp~. (22)1

obtained. s

In the Galerkin’s method, we first expand unknown E

and ~, in terms of linear combinations of known sets of

basis functions as

K

~(n)= ~ akfik(n)
k=l

(18a)

(18b)

where a~, k=l,2,. ... Kandb~, m= 1,”. .,ikfareunlmown

coefficients. It is important that fi~ and j5,~ are chosen

such that their inverse transform, say PJX) and PJX) are

nonzero only over the strip and septum, respectively.

We will now substitute (18) into (15a) and (15b) and

take the inner product of the resulting equations with
fi,, i=l,2,. ... Kandj.5,,,j =l,2,. ... M. The results are the

following coupled system of linear equations of size (K+
M) x (K+ M).

~ Ki~’ak + $ ~.~bm =Pi, ~=1,2,. . . ,K (19a)
k=] ~=1

~ ~~’ak+ ~ I$:bm ‘o, j=l,2, ”””, M (19b)
k-1 m-1

where

It is known that the capacitance expression in (22) has a,

stationary nature and is free from the first-order error

introduced in the choice of the basis functions ~k(n) andl

fi,~(n). AIso, the capacitance value computed in this
manner is always smaller than the true value. This fact

can be advantageously used in choosing basis functions.

It is mathematically conceivable to use complete sets

for p~(x) and p~~(x) and use their Fourier transforms as

the basis functions in (19). However, such a large size

matrix is not useful in practice. Much better convergence

can be obtained from a small size matrix if we choose a

few basis functions which represent physical characteris-

tics of the charge distributions on the strips and septums.

For instance, it is known that the charge distributions

become singular toward the edges of the strips and sep-

tums. When this nature is incorporated in the choice of

basis function, good results can be obtained from a veqi

small matrix size as we will demonstrate in the next

section. In selecting basis functions, it should be noted

that those resulting larger capacitance values are better

choices since the computed values are proven to be always
smaller than the true value.

In order to obtain the characteristic impedances and

the normalized guide wavelengths for even and odd
modes, we need to compute the line capacitance C for the

structure in Fig. 1 and the one Cair for the hypothetical
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problem for which E,= 1 in the same structure. The results

are

i

c.
z= Zai, -& (23)

(24)

where 2,1, = 1/(cC,,,) with the light velocity c in free

space and the free space wavelength L

IV. NUMERICAL RESULTS

Before generating reliable numerical results, it is im-

portant to select good basis functions. We have tested

several different functions as fil(n) and fi,l(n) and solved

the 2 x 2 equations resulting from (19). For @l we tested

the Fourier transforms of the following space functions

1, S<x<s+ wP(x)= { f-j, Othemise

p(x) =

p(x) = ~

4

5W

o,

(2 x–s–:
1+ )

w

(25)

S<x<s+w

otherwise

(26)

1
, S<x<s+w

[0, otherwise.

(27)

For b,, we have tested

[

~,(x)= -$(L-x), L-a<x<L
(28)

o, otherwise

/P.(x)= j(L-x)3,L-a<.x<L (29)

[0, otherwise

/

1 L–x
, L–a<x<L

p,(x) = z
-

(30)

[0, otherwise.

Note that the transforms of these functions can be readily

obtained in closed forms.

Table I summarizes the results of various combinations

of the above. Since the smaller the values of characteristic

impedances the better the choice is, the combination of

(27) and (30) is the most satisfactory. In (27) and (30) the

singular natures of the charge distribution near the edges

of the strip and septum are included, and, hence, they

represent actual distribution most faithfully. It is also

noted that the proper choice of the fi~ function is more

effective in accurate calculation of even-mode impedance

whereas that of C is more important for odd-mode imped-

ance. These findings are in agreement with the physical

TABLE I
COMPARISONOFTHECOMPUTEDRSSULTSFORDIFFERENT

CHOICESOFBASISFUNCTIONS

Comb, nat, ms Character.. t,c Impedances

0
p.

Even Mode Odd Mode

‘5 28 162.63 43.20

26 29 152.33 42.70

26 30 147.82 42. b5

27 30 146.61 40.26

(4 x 4 mat.., 145.52 39.92)*

%=9.6, .S/h=O.15, W/h= 1.2, a/Jz=7.0, b/h= 10.0, t/h= 10.0, L/h
= 10.0.

*(26) and (27) are used as Pi,i = 1,2, and (29) and (30) as p,i,
j=l,2.

300, I I I

.b”-
Zeven

200

g
_Th!s Method

/
/ –––_Aikawa

: ,/

: /
,/

:

E

100
t

“o 10 20

SIIi Width 2(L-a) (mm)

Fig. 2. Comparison of computed characteristic impedances with those
by Aikawa. c, =2.4, S=0.335 mm, W= 1.48 mm, L= 16.4 mm, t= 16.4
mm, h=l.64rnm, b=8.2mm

behavior of the potential and charge distributions. For the

even-mode impedance, the electric fluxes originate at the

strip and terminate at the grounded conductor as the

potentials of the two strips are identical. Hence, there is a

strong charge concentration toward the edges of the sep-

tums. The inclusion of singularity in p, correctly repre-

sents this phenomenon. On the other hand, for the odd-

mode, most of the fluxes are between two strips as their

potentials are opposite in polarity. The singular nature at

the edges of strips, therefore, improves the numerical

results.

We have also studied the convergence of the solution

by increasing the matrix size from 2x 2 to 4x 4. In the

4x 4 case, (26) and (27) were used for j51 and fiz whereas

(29) and (30) for @,, and fi,z. The results are given in Table

I. As the convergence is seen to be very good, we con-

cluded that it was unjustified to use any larger size matrix

with increasing computation time. All the data reported in

the rest of the paper were generated by the use of a 4x 4

matrix. Accuracy can be improved further by the use of a

larger size matrix. However, the degree of improvement

becomes increasingly small, and, hence, such improve-

ment is economically unjustified. The error of the numeri-

cal results reported here is believed to be less than 2
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1111 ~-T 1 I I

S/h
0. I
0.2
0.3

I I I I I I I I I

o 5 10
Slit Width 2( L-a)/h

(a)

I I I [ I I I I I

S/h

o 5 10
Slit Width 2( L-a)/h

0)

1 1 I I I I I I 1

o
0

1

S/h
0.1

/

::

z ~“~”

S/h

~ }.}

‘odd

1 1 I I I I 1 1 I

5

Slit Width 2( L-a)/h

(c)

10

I I I I I I I I I

-A,:
EVEN

●r =9.6 ODD

0.4 ~
5 10

Slit Width 2( L-a)/h

Fig. 4. Normalized guide wavelength versus the slit width. W/h=l.2,
L/h=b/h= t/h= 10.0, S/h=O.2

percent from the past experience gained in applying the

spectral domain method to microstripline problems.

In Fig. 2, we compared our results with those reported

by Aikawa [1]. The slit width is meant to be the distance

between edges of two septums. Except for the characteris-

tic impedance of the even mode of the structure with

small slit width (large septums), the results are indis-

tinguishable on the graph. It is noted that Aikawa used

the finite difference technique in which finer mesh points

for accelerating the convergence of computation have

been used only in the region surrounding the strips [1], [2],

No such procedures seemed to have been implemented.

near the edges of the septum. It is believed that the results

so obtained are accurate for the odd mode since the

strong interaction between strips can be taken intc~

account correctly. However, in the even-mode case, the

interaction between the strip and septum becomes more

important, and, hence, finer mesh points near the septum

edges are felt necessary.

In Fig. 3, characteristic impedances of even and odd

modes are plotted versus the slit width for a number of

structural parameters. Throughout Figs. 2 and 3 it is clear

that the even-mode impedance can be tuned over a wide

range by changing the septum size whereas the odd-mode

impedance is virtually unaffected.

Fig. 4 shows the guide wavelength& normalized by the

free space wavelength A versus the slit width. It is clearl:y

seen that the guide wavelength of the even mode vaires in

a wider range than that of the odd mode. Also notice that

at certain values of the septum width the guide wave-
lengths of even and odd mode coincide. This phenomenon

is useful for the directional coupler applications as

pointed by Aikawa [2].

Fig. 3. Characteristic impedances of coupled suspended lines versus
Variations of characteristic impedances and guide

the slit width. W/h= 1.2, L/h=b/h= t/h= 10.0.(a) Er=2.4. (b) c,= wavelengths versus the strip width are shown in Fig. 5 fm
3.8. (C) <,=9.6. a number of different dielectric materials. Characteristic
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(b) (c)

inmedance and normalized zuide wavelength versus strip width. L/h= b/h= [/h=
iO.0, S/h =0.2. (a) e,= ~.4. (b) c, =3.8. (c) c, =9.6:

impedances of the even mode vary more rapidly with the

strip width than those of the odd mode. Two values of a,

the septum width, are chosen. For one choice of a, the

guide wavelength of the even mode is larger than that of

the odd mode for any strip width in the range computed.

For another choice, the situation is completely opposite.

V. CONCLUSIONS

In this paper we presented a new efficient method for

computing the characteristic impedance and the guide

wavelength in coupled suspended microstriplines with

tuning septums. The method has a number of advantages

over many other methods and, in addition, is quite general

so that it can be applied to many similar structures. The

accuracy of the results was compared with available data.

A number of numerical data have been generated.

The structure considered here is believed useful in mi-

crowave integrated circuit applications for such devices as
a quadrature hybrid. In addition, we conjecture that the
structure can be used as a transition from one type of

transmission line to another, such as microstrip to

coplanar and microstrip to dielectric waveguide [10]. This

is because in the present structure we have greater flexibil-

ity in controlling the field distributions in the cross section

due to the presence of the septums than in many other

transition structures. The work along this line will be

attel.ipted in the future.
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The computation time in the case of a 4X 4 matrix was

1/s (CPU time) per point on a DECSYSTEM-10 com-

puter.
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